

SLAMseq: High-Throughput Sequencing of RNA Kinetics

Lexogen's SLAMseq Kits for high-throughput kinetic RNA sequencing enable transcriptome-wide analysis of RNA synthesis and turnover by measuring nascent RNA expression and transcript stability. In combination with expression profiling, SLAMseq allows temporal resolution of differential expression generating high-contrast fingerprints for perturbation experiments. SLAMseq is compatible with whole transcriptome sequencing and 3' mRNA-Seq for cost-efficient high-throughput screening setups, including drug discovery workflows.

Introduction - Kinetic Sequencing of RNA

Kinetic or metabolic RNA sequencing (RNA-Seq) combines labeling of newly synthesized RNA transcripts with RNA-Seq readout. Existing approaches utilize nucleotide derivatives such as 4-Thiouridine and biochemical pull-down to separate nascent and existing RNA for library preparation¹. These protocols are typically cost-, time-, and labor-intensive, require high amounts of RNA input, and often produce low signal quality¹.

SLAMseq Technology

Lexogen now offers a family of kits based on a new transcriptome-wide, quantitative, fast, and reliable method: SLAMseq (thiol (SH)-Linked Alkylation for the Metabolic Sequencing of RNA) ². SLAMseq uses 4-Thiouridine (S4U) to label nascent RNA in cultured cells (Fig. 1). The key feature of the workflow is an alkylation step, which uses iodoacetamide (IAA) to modify S4U nucleotides, leading to nucleotide conversion during reverse transcription. This results in thymine-to-cytosine (T>C) mutations in sequencing reads from S4U-labeled transcripts. Bioinformatic analysis of T>C-containing read counts can then be used to analyze nascent RNA levels.

SLAMseq Kits

Lexogen's SLAMseq kits provide a complete solution for metabolic RNA-Seq experiments, from optimizing S4U labeling conditions, to performing S4U labeling kinetics experiments and subsequent RNA isolation and alkylation (Table 1).

Table 1 | Lexogen's SLAMseq kits.

Kit Type	Module	Application	
SLAMseq Explorer Kit	Cell Viability Titration Module (Cat. No. 059.24)	Assess S4U toxicity in target cell lines Optimize S4U labeling concentrations	
	S4U Incorporation Module (Cat. No. 060.24)	Measure S4U uptake and incorporation rates using HPLC analysis	
SLAMseq Kinetics Kit	Anabolic Kinetics Module (Cat. No. 061.24)	Label newly transcribed RNA with S4U Measure RNA synthesis kinetics Analyze nascent RNA differential expression	
	Catabolic Kinetics Module (Cat. No. 062.24)	Label existing RNA with S4UAssess transcript stabilityAnalyze RNA degradation kinetics	

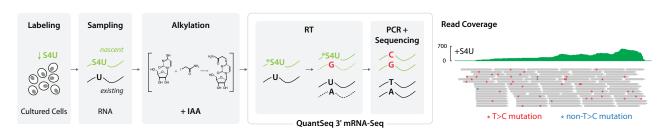


Figure 1 | The SLAMseq workflow. Cultured cells are treated with 4-Thiouridine (S4U) for labeling of nascent RNA (green). Total RNA is purified, and alkylation of the 4-thiol group is induced by the addition of iodoacetamide (IAA). During the library preparation, shown here using the QuantSeq 3' mRNA-Seq Library Prep Kit, the presence of the resulting carboxyamidomethyl-group causes reverse transcriptase to incorporate guanine (G, in red) instead of adenine (A, in black) at any position where a reduced *S4U-modified nucleotide is encountered. In this way, nascent RNA can be distinguished from existing RNA by the presence of T>C mutations (red stars) during subsequent data analysis.

Ordering Information

Catalog Numbers:

059 (SLAMseq Explorer Kit - Cell Viability Titration Module)

060 (SLAMseq Explorer Kit - S4U Incorporation Module)

061 (SLAMseg Kinetics Kit - Anabolic Kinetics Module)

062 (SLAMseq Kinetics Kit - Catabolic Kinetics Module) Associated Products:

191 - 196 (QuantSeg 3'mRNA-Seg V2 FWD with UDIs)

References:

- ¹ Neymotin B., et al. (2014). Determination of in vivo RNA kinetics using RATE-seq. RNA 20: 1645-1652.
- ² Herzog V., et al. (2017). Thiol-linked alkylation of RNA to assess expression dynamics. *Nature Methods*, doi: 10.1038/nmeth.4435.

SLAMseq Applications

Differential Expression Profiling of Nascent and Total RNA in Parallel

By defining nascent and total RNA levels for each sample, SLAMseq extends the depth of information provided by differential expression experiments. To demonstrate this, an anabolic kinetics experiment was conducted, using a 2-hour (120-minute) S4U labeling duration, comparing two treatment conditions to untreated controls at each time point (Table 2).

To assess the maximal effect of treatment, normalized log fold changes (LFC) were calculated for the highest treatment level (T2) versus control and compared at distinct time points (Table 2, Fig. 2). At the start of the experiment (t0), nascent and total RNA LFC were similar. However, nascent RNA LFC were increased at t120 compared to total RNA. The general downregulation of nascent RNA levels in T2 versus control indicates an inhibitory effect on transcriptional output in response to the treatment. Normalized LFC for T2 versus control comparisons for total RNA, however, showed only a modest increase over the same duration (Fig. 2, black).

Time (min)	Control	T1	T2
0	1	2	3
30	4	5	6
60	7	8	9
120	10	11	12

Table 2 | SLAMseq kinetics experiment for differential expression. Increasing strength treatment series (T1, T2) and control (no treatment) with S4U labeling (12 sample groups, numbered 1-12).

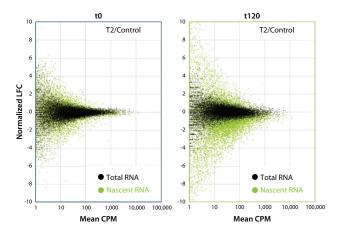


Figure 2 | Normalized LFC plots comparing treatment and control samples from a SLAMseq anabolic kinetics experiment. HeLa cells were grown in S4U-containing medium and exposed to a treatment series (T1 and T2) for 120 minutes. RNA was sampled according to Table 2. Following alkylation, QuantSeq FWD libraries were prepared from SLAMseq total RNA and sequenced, yielding 5-10 M reads per sample. Data was analyzed using the SLAMdunk Data Analysis Pipeline. Read counts were normalized using the formula: (CPM+0.1) x (CR $_{\rm gene}$ - CR $_{\rm global-10}$). This method corrects for zero values (CPM+0.1) and accounts for T>C conversions rates (CR = No. T>C conversions / total No. T nucleotides), by subtracting the average CR for all genes at t0 (CR $_{\rm global-10}$) from the per-gene CR (CR $_{\rm gene}$).

Analyze the Kinetics of mRNA Synthesis and Turnover Rates

SLAMseq can specifically measure the RNA synthesis and degradation kinetics of individual transcripts (Fig. 3). Similarly, transcript synthesis, stability, and decay can be globally assessed, providing novel insights into the control of gene expression at transcriptional and post-transcriptional levels.

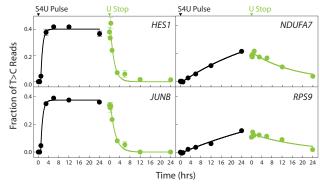


Figure 3 | S4U labeling kinetics experiments reveal individual RNA synthesis and degradation rates. Cells were first treated with S4U for 24 hours to measure RNA synthesis. RNA degradation rates were then measured over the next 24 hours after replacing S4U with unlabeled uridine (U Stop). mRNAs that encode for regulatory proteins, such as the transcription factors HES1 and JUNB, usually have high synthesis and turnover rates, as shown. In comparison, housekeeping genes such as NDUFA7 and RSP9 have slower transcription and degradation rates. Reproduced from Herzog et al., (2017) ².

Combine SLAMseq with QuantSeq for Complete High-Throughput Kinetic RNA-Seq

Total RNA from SLAMseq experiments can be used as direct input for library preparation with Lexogen's QuantSeq 3' mRNA-Seq Library Prep Kits (Cat. No. 191 - 196 QuantSeq FWD V2 with 12 nt UDI). QuantSeq generates stranded 3' Seq libraries that require lower read depth than standard RNA-Seq libraries. This enables samples from more complex experiments to be multiplexed together in a single sequencing lane or run. Therefore, both technical and biological replicates for treatment versus control can be included in kinetics experiments.

SLAMdunk - The SLAMseq Data Analysis Pipeline

Lexogen offers access to SLAMdunk², a customized pipeline for analyzing SLAMseq RNA-Seq data from libraries prepared with QuantSeq 3' mRNA-Seq Library Prep Kits (Fig. 4). Together, SLAMseq, QuantSeq, and SLAMdunk provide a complete, user-friendly solution for performing and analyzing high-throughput metabolic RNA-Seq experiments.

Figure 4 | The SLAMdunk Data Analysis Pipeline.

Find out more about SLAMseq at www.lexogen.com
Contact us at support@lexogen.com or +43 1 345 1212-41, or find your local contact at www.lexogen.com/distributors.

